Why Is There So Much Severe Weather In The Spring?
The key ingredients for supercell thunderstorms are: instability, a source of lift, moisture, and wind shear. Instability refers to the general alterations of atmospheric stability. For instance, if you were to draw out a parcel of air, said parcel would rise, fall, or remain in its current location depending on how stable (or unstable) its surrounding environment was.
That being said, these types of thunderstorms are almost never severe; once the environment runs out of surface moisture to mix into the atmosphere by the mid-to-late afternoon hours, then any storms that did develop will soon die out. In fact, these sorts of thunderstorms tend to have life expectancies of just under an hour. In order for storms to maintain themselves, they require another ingredient that has not yet been discussed.
We have already discussed one primary lifting mechanism: solar radiation. This process, however, only accounts for isolated thunderstorms to develop, given that such thunderstorms are limited to pockets where the air has become sufficiently unstable enough for parcels to rise and condense. If we take a look at North America, the return of spring re-introduces warmer air masses to the rest of the continent, while still experiencing cold spells whenever arctic air masses sink down into the lowe-48. The fronts that divide the two air masses themselves become large-scale lifting mechanisms that can also trigger thunderstorms. Moreover, geography also can play a significant role in providing sources of lift, as they are natural barriers that an air mass must overcome by rising on the wind side of the mountain before descending again on the leeward side. If the ascending air mass has sufficient moisture content and there is enough radiational heating, then the end-result can be oragraphically-induced thunderstorms.
?
Starting around the start of spring, low-level moisture tends to also be advected (transported) from the Gulf of Mexico and into the Great Plains of North America. This introduction of moisture into the environment allows for any prospective storms to have a greater source of moisture than they otherwise would, aiding in the production of very sharp contrasts between moist and dry air masses. It is these sorts of boundaries between the two air masses that lead to the development of a dry line, which commonly develops in the Great Plains when this sort of moisture advection occurs. This area of the world also harbors a unique topographical setting which further allows for the production of dry lines; the elevation of the Great Plains gradually increases from east to west given they cover an area that’s stretches from the Mississippi River Basin all the way to the front-range of the Rocky Mountains. As such, when Gulf Moisture moves across the Great Plains, it slows down and fills in the areas which host lower elevations. As it does so, this air mass then comes in contact with much drier air from the American Southwest, which descends into the Great Plains from areas of higher elevation. Given that this drier, denser air mass, is descending into a moister, lighter air mass, the end result is a source of lift that can enable for much larger areas of ascent that can cover large swaths of the Plains on a much greater scale than what is observed from isolated, tropical and subtropical thunderstorms.
Wind shear is essentially the change in wind speed and/or direction with respect to height. In the case of isolated thunderstorms that occur in the tropics, this ingredient is nearly non-existent given that the air masses of such environments tend to be stable with the exception of the localized areas of enhanced heating where the storms were able to initiate from. As such, once the thunderhead reaches its highest level in the atmosphere, all of the parcels that have cooled and condensed will sink back down to the surface. This downdraft will then cut off any supply of warm, moist air that initiated the thunderstorm, and produce an outflow boundary that may help to produce a new one in its wake. Under conditions in which there is greater wind shear, however, such a thunderstorm would have a downdraft that sinks further away from the core of the storm. As such, these thunderstorms require sources of lift that can produce sufficient enough wind shear given that this difference in the location between a thunderstorm’s updraft and downdraft will then in turn allow for a thunderstorm to maintain itself for a much longer period of time, strengthen, and become a much more severe thunderstorm that can potentially produce hail, damaging winds, and of course tornadoes.
Given this requirement, supercells are most likely to be produced over areas with strong, well-defined air mass boundaries, such as surface fronts or dry lines. As such, the mid-latitudes, which include areas like the Great Plains of North America, are prime locations for such thunderstorms to develop in the spring. This season is when these boundaries begin to develop at greater rates across the continent while the reintroductions of vegetation, along with increased radiative heating, ensure that the environment is much more prime for supercells and the severe weather hazards that come along with them.
To learn more about all things climate, please click here!
©2019 Meteorologist Gerardo Diaz Jr.
https://nssl.noaa.gov/education/svrwx101/thunderstorms/
http://medialibrary.climatecentral.org/resources/severe-weather-climatology
https://www.weather.gov/ama/supercell
AlabamaWX is pleased to partner with the Global Weather and Climate Center team for outstanding posts about our atmosphere. Visit them at https://www.globalweatherclimatecenter.com for more great information!
Category: Partner News Stories